VALLIGNUS

Vallighus Runtime
Governance for
Autonomous Al Systems

VALLIGNUS.COM

Vallignus Runtime Governance for Autonomous Al Systems

Table of Contents

1 Executive Summary
2 The Emerging Risk of Autonomous Execution
2.1 Autonomous Agents as Synthetic Insider Threats
3 Runtime Governance as a Control Primitive
4 Core Principles of Runtime Governance
5 Runtime Governance Architecture
5.1 Logic-Layer Governance vs Infrastructure-Layer Isolation
6 Runtime Enforcement and Policy Execution
6.1 Common Runtime Failure Modes and Enforcement Responses
7 Auditability, Accountability, and Oversight
8 Implications for Enterprise and Government Systems

9 Conclusion: Toward Governed Autonomy

VALLIGNUS Vallignus - Runtime Governance for Autonomous Al Systems

o O b~ W

10
13
15
16
18
20

Vallignus Runtime Governance for Autonomous Al Systems

1 Executive Summary

Autonomous Al agents are rapidly moving beyond passive assistance and into
direct operational roles. These systems can browse the internet, invoke tools, write
and modify files, interact with APls, and execute multi-step tasks without
continuous human supervision. In doing so, they blur the traditional boundary
between software and operator. Once deployed, an agent is no longer a short-
lived computation but a persistent actor within an environment, capable of making
decisions that have real technical, financial, and security consequences. As
adoption accelerates, particularly in enterprise and government contexts, these
systems are increasingly trusted with privileges that were previously reserved for
human users or tightly scoped services.

Existing safety and security frameworks are not designed for this shift. Most current
controls operate at the model level through prompt constraints, policy filters, or
alignment techniques that attempt to influence how the system reasons. In
practice, autonomous systems do not operate in static conditions. Goals evolve,
context changes, tools fail, and partial information accumulates across time. When
an agent is permitted to act repeatedly, small errors can compound into systemic
failures. Traditional cybersecurity tools, meanwhile, treat the agent as just another
application, offering little visibility into whether its behavior remains consistent with
its original purpose.

This creates a critical governance gap. There is no standardized mechanism to
enforce what an agent is allowed to do at runtime, independent of its internal
reasoning. Developers are often forced to rely on manual supervision, informal
guardrails, or ad hoc restrictions embedded in application logic. These measures
are fragile and do not scale, especially in long-running or unattended deployments.
As a result, organizations are increasingly exposed to situations where an
autonomous system retains access long after its task has changed, exceeded, or
become unsafe.

This paper proposes runtime governance as a foundational control layer for
autonomous Al systems. Rather than attempting to shape model behavior, runtime
governance enforces deterministic constraints on execution itself. By placing
enforceable boundaries between agents and the systems they interact with,
organizations can preserve the benefits of autonomy while maintaining
accountability, containment, and operational control.

VALLIGNUS Vallignus - Runtime Governance for Autonomous Al Systems 3

Vallignus Runtime Governance for Autonomous Al Systems

2 The Emerging Risk of Autonomous Execution

The rapid deployment of Al agents has introduced a new class of operational risk
that does not neatly fit within existing security or governance models. Unlike
traditional software, autonomous agents are not limited to predefined execution
paths. They interpret objectives, select tools dynamically, and operate across
extended time horizons. In many environments, agents retain access to file
systems, credentials, network resources, and internal services while continuously
adapting their behavior based on evolving context. This creates a scenario in which
authority is granted once but exercised repeatedly, often without meaningful
reassessment of whether that authority remains appropriate.

In practice, failures rarely occur through a single catastrophic action. Instead, risk
accumulates through compounding behaviors: repeated retries, escalating tool
usage, silent permission drift, and uncontrolled interaction with external systems.
An agent may begin with a benign objective but encounter ambiguous states that
cause it to explore alternative strategies, trigger unexpected integrations, or persist
in loops that generate unintended side effects. Because these actions are
technically valid from the system’s perspective, they frequently bypass traditional
safeguards. Logging may record what occurred, but it does not prevent
continuation. Alerting may surface anomalies, but only after impact has already
begun.

For example, an agent tasked with ‘summarizing internal incident reports’ may
retain access to sensitive repositories long after the task completes. If its context
is later perturbed or its objective drifts, that persistent access becomes a pathway
to unintended disclosure or destructive actions. Under runtime governance,
execution authority can be time-bounded and scope-limited so that access expires
automatically unless explicitly renewed.

This shift transforms the core problem from intent alignment to execution control.
The central question is no longer whether an agent understands what it should do,
but whether it should be allowed to continue doing anything at all.

VALLIGNUS Vallignus - Runtime Governance for Autonomous Al Systems 4

Vallignus Runtime Governance for Autonomous Al Systems

2.1 Autonomous Agents as Synthetic Insider Threats

Autonomous agents effectively operate as persistent, credentialed actors within
internal systems. Unlike traditional software processes, they are capable of
initiating novel actions, selecting tools dynamically, and executing decisions over
extended time horizons without direct human oversight.

In this context, an autonomous agent functions as a synthetic insider. It possesses
legitimate access, operates under valid credentials, and performs actions that may
appear operationally normal when evaluated in isolation. When an agent’s context
is compromised through prompt injection, data poisoning, or objective drift, its
behavior can diverge from organizational intent while remaining technically
authorized.

Traditional security controls such as data loss prevention, network monitoring, and
access logging are poorly suited to this threat model. These systems are designed
to detect anomalous external behavior, not misuse of valid internal authority. As a
result, an autonomous agent may exfiltrate data, misuse credentials, or propagate
unintended actions while appearing indistinguishable from a legitimate automated
workflow.

This shifts the core risk from external compromise to misuse of granted authority.
Effective governance must therefore focus not on detecting malicious intent, but
on constraining what any autonomous system is permitted to execute, regardless
of how or why the action was generated.

VALLIGNUS Vallignus - Runtime Governance for Autonomous Al Systems 5

Vallignus Runtime Governance for Autonomous Al Systems

3 Runtime Governance as a Control Primitive

Existing approaches to Al governance primarily focus on shaping model behavior
prior to execution. In this paper, runtime governance refers to an execution-level
control layer that authorizes, constrains, or denies agent actions in real time,
independent of model decision logic or intent formation. Techniques such as
prompt constraints, policy filters, and alignment strategies are designed to
influence how an agent reasons about a task. While these controls may affect
intent formation, they offer limited protection once an autonomous system begins
operating in a live environment. At runtime, decisions are no longer theoretical.
The agent is actively invoking tools, accessing systems, modifying state, and
interacting with external services. Governance mechanisms that exist only at the
reasoning layer cannot enforce meaningful boundaries over these actions once
execution has begun.

This limitation becomes increasingly pronounced as agents operate over extended
time horizons. Autonomous systems do not execute a single isolated instruction,
but rather a sequence of evolving decisions shaped by partial information,
intermediate outcomes, and changing environmental context. Over time, small
deviations can compound into behavior that no longer aligns with the original
objective. An agent may continue acting in ways that are technically valid yet
operationally unsafe, without triggering traditional guardrails that were designed
for static or short-lived interactions.

Observability alone is insufficient to address this gap. While logging and monitoring
provide visibility into what an agent has done, they do not prevent undesired
actions from occurring in the first place. Alerts often surface only after impact has
already taken place, when data has been accessed, credentials have been
exercised, or external systems have been affected. In highly privileged
environments, post hoc visibility does not constitute meaningful control. Effective
governance requires the ability to intervene before execution proceeds, not merely
to analyze outcomes afterward.

Runtime governance reframes control around the moment where authority is
exercised. Rather than attempting to predict or influence reasoning, runtime

VALLIGNUS Vallignus - Runtime Governance for Autonomous Al Systems 6

Vallignus Runtime Governance for Autonomous Al Systems

governance enforces deterministic constraints on execution itself. By defining what
actions are permitted, under what conditions, and for how long, organizations can
establish enforceable boundaries that persist regardless of how an agent’s internal
reasoning evolves. In this model, autonomy is not eliminated but bounded.
Execution becomes a governed process that preserves bounded execution and
operational assurance.

Runtime governance does not replace alignment techniques, secure development
practices, or application-level controls. It complements them by enforcing authority
at the execution boundary, where model-level and workflow-level safeguards no
longer provide reliable control.

VALLIGNUS Vallignus - Runtime Governance for Autonomous Al Systems 7

Vallignus Runtime Governance for Autonomous Al Systems

4 Core Principles of Runtime Governance

Effective runtime governance requires a shift from abstract policy definitions to
enforceable operational constraints. Rather than attempting to govern intent or
influence reasoning, governance must be anchored in the concrete moments
where authority is exercised. This requires clearly defined principles that translate
high-level risk tolerance into deterministic execution boundaries. These principles
do not replace existing security or compliance frameworks but extend them into
the runtime layer where autonomous behavior occurs.

At its foundation, runtime governance must treat execution as a privileged act
rather than a default capability. Every action performed by an autonomous system
represents a transfer of authority from the organization to the agent. Without
explicit constraints, that authority persists indefinitely, even as objectives,
environments, and risk conditions change. Governance, therefore, must focus on
limiting not only what an agent can do, but when, under what conditions, and for
how long that authority remains valid.

The first principle is explicit authorization. Autonomous systems should not
inherit broad or implicit permissions by default. Instead, authority must be granted
deliberately, scoped to specific actions, resources, and contexts. This ensures that
access is purposeful rather than residual and prevents agents from accumulating
capabilities simply through continued operation. Explicit authorization transforms
autonomy from open-ended execution into conditional permission.

The second principle is contextual constraint. Actions that may be acceptable
under one set of conditions may become unsafe under another. Runtime
governance must incorporate environmental signals such as task state, system
health, elapsed time, or external dependency changes. By tying execution rights
to live context rather than static configuration, organizations can prevent agents
from continuing operations when underlying assumptions are no longer valid.

The third principle is temporal limitation. Authority should decay unless it is
actively renewed. Long-running agents frequently outlive the intent that initiated
them, leading to permission drift and unintended persistence. Time-bounded
execution ensures that autonomy remains aligned with current objectives and
forces deliberate reauthorization as conditions evolve. In this model, continued
operation becomes an explicit choice rather than an accident of uptime.

VALLIGNUS Vallignus - Runtime Governance for Autonomous Al Systems 8

Vallignus Runtime Governance for Autonomous Al Systems

The final principle is intervention capability. Governance must allow systems to
halt, restrict, or revoke execution before harm occurs. Observability alone is
insufficient when response follows impact. Runtime governance requires the ability
to intervene synchronously, preventing actions from completing when they violate
defined constraints. This transforms control from reactive oversight into proactive
enforcement.

Together, these principles establish a governance framework that operates at the
point of execution rather than the point of design. By enforcing authorization,
context, time, and intervention directly within runtime, organizations can preserve
the benefits of autonomous operation while maintaining governed autonomy and
execution safety.

VALLIGNUS Vallignus - Runtime Governance for Autonomous Al Systems 9

Vallignus Runtime Governance for Autonomous Al Systems

5 Runtime Governance Architecture

Runtime governance introduces a distinct architectural control layer within
autonomous Al systems. Rather than operating at the level of model reasoning or
application logic, this layer is positioned directly between an agent and the systems
it is authorized to access. Its role is not to influence what an agent intends to do,
but to govern what it is permitted to execute in real time.

In a typical autonomous stack, intent originates from a user or mission definition
and is interpreted by a model. That model’s outputs are operationalized through
an agent framework, which coordinates tool usage, system access, and task
sequencing. Once execution begins, the agent interacts directly with files, APls,
credentials, network resources, and external services. At this stage, most existing
governance mechanisms are no longer active. Authority flows downstream without
continuous enforcement, and decisions are executed immediately once produced.

Runtime governance intervenes at this execution boundary. By residing between
the agent and its available capabilities, the governance layer evaluates each
attempted action before it occurs. This evaluation is independent of model decision
logic and does not rely on semantic interpretation of intent. Instead, it enforces
deterministic rules governing what actions are allowed, under what conditions, and
for what duration. Execution is permitted only when those conditions are satisfied.

This architectural separation is critical. Governance logic embedded within
application code or agent prompts remains tightly coupled to specific workflows
and cannot persist as agent behavior evolves. In contrast, a dedicated runtime
layer maintains authority regardless of how goals change, tools are selected, or
reasoning paths evolve. Control is preserved even when an agent’s internal state
diverges from its original objective.

Vallignus implements this architecture as an execution-layer control system that
operates independently of agent reasoning, enabling governance policies to be
enforced consistently across models, frameworks, and long-running autonomous
workflows.

VALLIGNUS Vallignus - Runtime Governance for Autonomous Al Systems 10

Vallignus Runtime Governance for Autonomous Al Systems

5.1 Logic-Layer Governance vs Infrastructure-Layer
Isolation

Traditional containment mechanisms such as containers, virtual machines, and
operating system sandboxes operate at the infrastructure layer. These controls
restrict access to resources, defining what files, networks, or system calls a
process may access. While effective for isolating workloads, they do not govern
the logic of execution itself.

Autonomous agents introduce a different class of risk. The critical failure mode is
not unauthorized access to a file descriptor, but the repeated or inappropriate
exercise of otherwise valid capabilities. An agent operating inside a container may
remain fully compliant with infrastructure constraints while still engaging in unsafe
behavior, such as excessive retries, uncontrolled external communication, or
execution beyond the scope of its original objective.

Runtime governance operates at the logic layer rather than the infrastructure layer.
Instead of limiting which resources exist, it governs when, why, and under what
conditions authority may be exercised. This enables constraints such as limiting
execution duration, preventing mission drift, restricting action frequency, or
revoking authority when contextual assumptions change.

Infrastructure isolation defines where an agent may operate. Runtime governance
defines how it is allowed to operate. Both are complementary, but only logic-layer
governance can enforce bounded autonomy in long-running autonomous systems.

VALLIGNUS Vallignus - Runtime Governance for Autonomous Al Systems 11

Vallignus Runtime Governance for Autonomous Al Systems

VALLIGNUS

j
Intent & Orchestration

Agent reasoning, planning,
and tool selection

ENFORCEMENT BOUNDARY

Runtime Governance
Layer (VALLIGNUS)

» Execution authorization

« Policy enforcement

« Time & scope boundaries
« Privilege isolation

~

-7

r A

Execution Surface

Files - APls - Credentials -
Network - External
Systems

Vallignus - Runtime Governance for Autonomous Al Systems

Figure 1: Runtime Governance Control Architecture

12

Vallignus Runtime Governance for Autonomous Al Systems

6 Runtime Enforcement and Policy Execution

-
Agent proposes action

p
Execution request intercepted W

L

Runtime Governance
Evaluation
* Policy
* Scope
+ Time
+ Context

[Enforcement Decision }

Authorized Rejected

Enforcement Enforcement
Record Record

Figure 2: Runtime Execution Enforcement Flow

Runtime governance is effective only if enforcement occurs at the moment an
action is attempted. Rather than evaluating outcomes after execution, the
governance layer must intervene before authority is exercised. This requires a shift
from observational controls to deterministic execution enforcement, where every
attempted operation is evaluated against enforceable policy prior to being carried
out.

In an autonomous system, execution requests originate when an agent attempts
to perform an action such as invoking an API, accessing a file, using credentials,
initiating a network call, or interacting with an external service. At this point, intent
has already been translated into action. Runtime governance operates precisely
at this boundary, intercepting execution requests before they reach the underlying
system surface.

VALLIGNUS Vallignus - Runtime Governance for Autonomous Al Systems 13

Vallignus Runtime Governance for Autonomous Al Systems

Each requested action is evaluated against a set of active runtime policies. These
policies define explicit constraints including allowed actions, resource scope,
execution context, time limits, escalation thresholds, and privilege boundaries.
Enforcement is not probabilistic and does not rely on semantic interpretation of
agent intent. Instead, policies are evaluated as deterministic rules applied
uniformly across all execution attempts.

When a requested action satisfies all active constraints, execution is permitted and
proceeds normally. When a request violates policy, execution is denied by default.
This denial occurs synchronously and prevents the action from being initiated at
the system level. As a result, unsafe or unauthorized behavior cannot occur, even
if the agent’s internal reasoning process determines that the action is valid or
desirable.

Runtime enforcement also supports conditional and contextual evaluation. Policies
may incorporate factors such as execution frequency, accumulated actions over
time, environment classification, or privilege escalation state. This enables
governance to account for compounding risk, where individual actions may appear
safe in isolation but become unsafe when repeated or combined.

Importantly, enforcement decisions are independent of how an agent arrived at a
given action. Retries, alternative reasoning paths, prompt reformulation, or model
self-correction do not alter enforcement outcomes. Because governance is applied
at execution rather than reasoning, agents cannot bypass constraints through
adaptation or exploration. Authority remains fixed even as behavior evolves.

This enforcement model ensures that governance persists throughout the lifecycle
of an autonomous system. Policies remain active across long-running sessions,
unattended execution, and dynamic goal shifts. Control does not degrade over
time, nor does it depend on continuous human supervision to remain effective.

By enforcing policy at the execution boundary, runtime governance establishes a
reliable mechanism for maintaining operational safety, containment, and
accountability. Autonomous systems retain the ability to reason, plan, and adapt,
but execution remains subject to explicit authorization. In this model, autonomy is
preserved, but authority is never implicit.

VALLIGNUS Vallignus - Runtime Governance for Autonomous Al Systems 14

Vallignus Runtime Governance for Autonomous Al Systems

6.1 Common Runtime Failure Modes and Enforcement
Responses

Runtime governance enables deterministic responses to common failure modes
observed in autonomous systems. Rather than relying on detection after impact,
enforcement occurs before execution proceeds. Examples include:

* Infinite or excessive retry loops
Execution is halted once predefined action or time thresholds are exceeded.

* Unauthorized network egress
Requests to unapproved destinations are denied prior to execution.

* Privilege escalation attempts
Actions exceeding the agent’s authorized scope are blocked and recorded.

» Continued operation after task completion
Authority expires automatically unless explicitly renewed.

* Unexpected tool invocation or integration activation
Execution is denied when outside approved policy conditions.

In each case, enforcement decisions are applied synchronously and recorded as
part of the system’s governance audit trail. Unsafe actions are prevented by design
rather than investigated after impact has occurred.

VALLIGNUS Vallignus - Runtime Governance for Autonomous Al Systems 15

Vallignus Runtime Governance for Autonomous Al Systems

7 Auditability, Accountability, and Oversight

Autonomous systems introduce a fundamental challenge for organizational
oversight. As agents operate independently across extended time horizons,
traditional monitoring approaches become insufficient to establish accountability.
Logging model outputs or recording execution traces after the fact does not provide
meaningful assurance that authority was exercised appropriately at the time
decisions were made. Effective governance requires the ability to demonstrate not
only what occurred, but under what permissions, constraints, and conditions each
action was allowed to proceed.

Runtime governance enables auditability by generating enforcement-level records
at the point of execution. Each attempted action is evaluated against active
governance policies before it occurs, producing an authoritative record of whether
execution was permitted, denied, delayed, or escalated. These records reflect the
actual boundaries applied to the system, independent of an agent’s internal
reasoning process. As a result, audit trails capture operational control rather than
inferred intent, providing a verifiable account of how authority was exercised in
practice.

This distinction is critical for accountability. In autonomous systems, failures often
emerge not from a single catastrophic decision, but from a sequence of technically
valid actions that collectively exceed acceptable risk. Post hoc inspection of
reasoning or logs may explain what happened but cannot demonstrate that
appropriate controls were in place beforehand. By contrast, runtime governance
produces a continuous record of enforced limits, enabling organizations to
reconstruct the exact governance state under which each action occurred.

Oversight in this model shifts from continuous human supervision to structured
review of bounded execution. Human operators are not required to monitor agents
in real time. Instead, oversight is achieved through policy definition, enforcement
review, and audit analysis. Governance decisions are made explicit, inspectable,
and attributable, allowing organizations to assess whether autonomous behavior
remained within authorized limits throughout an agent’s operational lifecycle.

This approach also supports institutional requirements for transparency and
compliance. Regulatory review, internal audits, and incident investigations
increasingly require evidence of active control rather than retrospective

VALLIGNUS Vallignus - Runtime Governance for Autonomous Al Systems 16

Vallignus Runtime Governance for Autonomous Al Systems

explanation. Runtime governance provides a mechanism to demonstrate that
autonomous systems operated within defined authority structures, that privilege
escalation was constrained, and that unsafe or unauthorized actions were
technically prevented, not merely discouraged.

By grounding accountability at the execution layer, runtime governance
establishes a durable foundation for oversight in autonomous systems. Control
becomes demonstrable, reviewable, and enforceable, enabling organizations to
deploy increasingly capable agents while preserving institutional responsibility,
audit integrity, and operational trust.

VALLIGNUS Vallignus - Runtime Governance for Autonomous Al Systems 17

Vallignus Runtime Governance for Autonomous Al Systems

8 Implications for Enterprise and Government
Systems

The adoption of autonomous systems within enterprise and government
environments introduces constraints that differ fundamentally from consumer or
experimental use cases. These environments operate under strict requirements
for accountability, access control, auditability, and risk management. Autonomous
agents deployed within such contexts must function within clearly defined authority
boundaries, regardless of their internal reasoning capabilities or performance
optimizations.

In high-trust environments, unrestricted autonomy is rarely acceptable. Systems
must be capable of demonstrating not only functional effectiveness, but also
enforceable governance. This includes the ability to limit execution scope,
constrain privilege escalation, and ensure that automated actions always align with
organizational policies. As autonomous agents assume greater operational
responsibility, the absence of runtime control mechanisms becomes a limiting
factor for deployment at scale.

Runtime governance enables organizations to reconcile autonomy with
institutional responsibility. By introducing deterministic enforcement at the
execution layer, enterprises and government entities can allow agents to operate
independently while maintaining confidence that actions remain bounded by
policy. This approach reduces reliance on continuous human supervision and
mitigates the operational burden associated with long-running or unattended
autonomous processes.

For regulated environments, runtime governance also supports alignment with
existing risk and compliance frameworks. Rather than introducing entirely new
governance structures, execution-level enforcement can integrate with established
access control, identity management, and audit workflows. Autonomous systems
become subject to the same expectations of authorization, traceability, and review
that already govern human and service-based activity.

In government and defense contexts, these considerations are amplified. Systems
frequently operate across sensitive data domains, classified environments, and
mission-critical infrastructure. The ability to demonstrate enforceable control over

VALLIGNUS Vallignus - Runtime Governance for Autonomous Al Systems 18

Vallignus Runtime Governance for Autonomous Al Systems

autonomous execution is essential not only for internal governance, but for
interagency coordination, oversight, and assurance. Runtime governance provides
a mechanism for deploying autonomous capabilities without eroding established
authority structures.

As autonomous systems continue to evolve, their adoption will increasingly depend
on the presence of verifiable control rather than raw capability. Organizations that
can demonstrate bounded autonomy will be positioned to deploy agents more
broadly, while those relying solely on intent-based safeguards will face structural
limitations. Runtime governance establishes the foundation upon which
autonomous systems can be trusted, scaled, and integrated into institutional
operations.

VALLIGNUS Vallignus - Runtime Governance for Autonomous Al Systems 19

Vallignus Runtime Governance for Autonomous Al Systems

9 Conclusion: Toward Governed Autonomy

As autonomous systems become increasingly capable, the question of control
becomes central to their responsible deployment. Advances in reasoning,
planning, and tool use have expanded what agents can accomplish, but have also
amplified the risks associated with unrestricted execution. Without enforceable
boundaries, autonomy scales faster than governance, creating structural
limitations for adoption in environments where accountability and assurance are
mandatory.

This paper has argued that effective governance cannot reside solely within model
behavior or application logic. Control must be exercised at the point where
authority is enacted. By introducing runtime governance as an independent
enforcement layer, organizations can establish deterministic limits on execution
while preserving the adaptive capabilities that make autonomous systems
valuable.

Runtime governance reframes autonomy as a bounded capability rather than an
open-ended permission. Execution becomes conditional, auditable, and revocable
by design. This approach enables institutions to move beyond reliance on intent-
based safeguards and toward verifiable control mechanisms that persist across
long-running and unattended operations.

As autonomous systems continue to mature, their successful integration into
enterprise and government environments will depend less on what they can do
and more on how reliably they can be governed. Establishing execution-level
control provides a foundation for trust, scalability, and institutional adoption.
Governed autonomy represents not a restriction on intelligent systems, but a
prerequisite for their sustainable use.

VALLIGNUS Vallignus - Runtime Governance for Autonomous Al Systems 20

	Table of Contents
	1 Executive Summary
	2 The Emerging Risk of Autonomous Execution
	2.1 Autonomous Agents as Synthetic Insider Threats

	3 Runtime Governance as a Control Primitive
	4 Core Principles of Runtime Governance
	5 Runtime Governance Architecture
	5.1 Logic-Layer Governance vs Infrastructure-Layer Isolation

	6 Runtime Enforcement and Policy Execution
	6.1 Common Runtime Failure Modes and Enforcement Responses

	7 Auditability, Accountability, and Oversight
	8 Implications for Enterprise and Government Systems
	9 Conclusion: Toward Governed Autonomy

